水电之家讯:人们永远追求更高的目标,想要容量更高的锂离子电池负极材料,传统的石墨已经不能满足人们的需求。
其他可选锂离子电池负极材料如硅、锗、锡容量十分可观(图1)。
图1 可选锂离子电池负极材料的储锂容量
然而这一类合金化的负极材料体积膨胀巨大,往往导致不同锂化程度区域变形不协调,致使裂纹产生、电极整体结构碎裂及电池寿命衰减。如图2为硅负极的例子。
图2 硅薄膜电极结构在充/放电循环过程中形态变化及破裂失效的示意和实验结果
通过构建纳米结构有利于应变的松弛并有效提高电池功率,例如图3的硅纳米线。
图3 生长在集电器上的硅纳米线在充/放电循环过程中行为的示意和实验结果
然而,即使电极材料采用纳米结构也无法完全克服膨胀带来的容量衰减。因此,很有必要深入研究高容量电极材料在充/放电过程中的变形和破坏机理。
1 实验研究
1.1 透射电子显微镜实时研究
设计了一种基于高倍透射电子显微镜的实时实验平台(in-situ TEM)可对电极材料在充/放电过程中的变形、相变及裂纹的产生和扩展进行实时观察和记录(图4)。
图4 在高倍透射电子显微镜的实时实验平台中,由不同纳米线或纳米颗粒和固态块状金属锂
基于in-situ TEM,发现晶体硅纳米结构的锂化过程是通过锂浓度突变的锂化界面(ACI)向结构内部的不断推进而实现的。
图5 高倍透射电子显微镜实时实验中观测到的〈112〉硅纳米线充电过程
同时,晶体硅的锂化速率高度依赖于其晶体取向,不同取向的晶体硅结构在锂嵌入后不仅会呈现出各向异性的变形,而且会导致依赖于晶体取向、尺寸的断裂模式。如纳米线在充电之后,其横截面的变形、裂纹的起裂位置高度依赖于纳米线的取向(图6)。
图6 不同晶体取向的硅纳米线在充电之后各向异性的变形和断裂模式
对于锗纳米线,在充/放电循环过程中会产生可逆的纳米孔洞结构,有效提高锂离子扩散速度和起到缓冲应力的作用。相较于硅纳米线,呈现出非常低的体积膨胀的各向异性,正是由于这种非常低的各向异性,锗纳米颗粒的电化学循环性能远远高于晶体硅纳米颗粒。
图7 由充电引起的晶体硅纳米颗粒的各向异性的体积膨胀和破裂,对比于晶体锗纳米颗粒和非晶体硅纳米颗粒的几乎各向同性的、稳定的体积变形
水电之家为您提供最全面的管材,管件,水电,电线,电工,管材水电品牌的装修知识点和各种管材水电的导购与在线购买服务,拥有最便宜的管材水电价格和最优质的售后服务,每天都有秒杀的抢购活动哦!敬请登陆水电之家:http://shuidian.jc68.com/